Congruent Triangles

Two triangles are congruent if all of their corresponding parts are congruent. This means that congruent triangles will have three pairs of congruent sides and three pairs of congruent angles.

Congruent triangles must have the same size and shape, but may be positioned differently. Thus, in the figures below, $\triangle \mathrm{ABC} \cong \Delta \mathrm{DEF}$, and also $\triangle \mathrm{ABC} \cong \Delta \mathrm{XYZ}$.

When we say two triangles are congruent, the way in which we name the triangles is important! Vertices written in the same position correspond to one another, and are congruent. (So if $\Delta A B C \cong \Delta X Y Z$, then angles A and X are congruent.) The sides between corresponding vertices are also congruent, so $\mathrm{XZ} \cong \mathrm{AC}$.

$\Delta \mathrm{ABC} \cong \Delta X Y Z$

Corresponding Angles	Corresponding Sides
$\angle A \cong \angle X$	$A B \cong X Y$
$\angle B \cong \angle Y$	$B C \cong Y Z$
$\angle C \cong \angle Z$	$A C \cong X Z$

To determine whether or not two triangles are congruent, we do not need to know that ALL of the sides and ALL of the angles are congruent. We can actually know as few as three pairs of corresponding parts, as long as they fall into a specific pattern
These are the only ways to prove two triangles congruent!
Side - Side - Side (SSS)
If three sides of one triangle are congruent to the corresponding three sides of another triangle, the two triangles are congruent.

Side - Angle - Side (SAS)
If two sides and the included angle of one triangle are congruent to the corresponding parts of another triangle, the two triangles are congruent.
Angle - Side - Angle (ASA)
f two angles and the included side of one triangle are congruent to the corresponding parts of another riangle, the two triangles are

congruent.

Angle - Angle - Side (AAS)
If two angles and a nonincluded side of one triangle are congruent to the corresponding parts of another triangle, the two triangles
 are congruent.

Hypotenuse - Leg (HL)

If the hypotenuse and a leg of one right triangle are congruent to the corresponding parts of another right triangle, the two triangles are

congruent

**This only works in right triangles!

Using the given information, which method would you use to prove the two triangles congruent?

Given: $\triangle A B C, \triangle E D C$

$$
\angle 1 \cong \angle 2, \angle A \cong \angle E
$$

$$
\text { and } \overline{A C} \cong \overline{E C}
$$

Prove: $\triangle A B C \cong \triangle E D C$

Answer: ASA
(AC is included between
$\angle A$ and $\angle 1$)

Using the given information, which method would you use to prove the two triangles congruent?

Answer: SAS
($\angle B$ is included between
$A B$ and $B C$)

Using the given information, which method would you use to prove the two triangles congruent?

Given: $\angle A \cong \angle E$
$\angle C B A \cong \angle D B E$
B is midpoint of $\overline{A E}$
Prove: $\triangle A B C \cong \triangle E B D$

Answer: ASA

$$
\text { Given: } \begin{aligned}
<1 & \cong<2 \\
B C & \cong D C
\end{aligned}
$$

Prove: $\triangle \mathrm{ABC} \cong \triangle E D C$

What additional information would I need to prove that $\triangle \mathrm{ABC} \cong \triangle \mathrm{EDC}$ by:

$$
A S A: \quad<B \cong<D
$$

SAS: $A C \cong E C$

$$
\text { SAA: } \quad<A \cong<E
$$

Given: $\begin{aligned}<C & \cong \angle D \\ D E & \cong C E\end{aligned}$
Prove: $\triangle \mathrm{ACE} \cong \triangle \mathrm{BDE}$

What additional information would I need to prove that $\triangle A B C \cong \triangle B D E$ by:

ASA: $<1 \cong<2 \longleftarrow \begin{aligned} & \text { We know this! } \\ & \text { (vertical angles) }\end{aligned}$
SAS: $\quad A C \cong B D$
SAA: $\quad<A \cong<B$

Ways that WON'T work to prove congruence:

Angle - Angle - Angle
Two triangles that have all angles congruent will be similar (their sides will be proportional), but not necessarily congruent.

Angle - Side - Side
There are actually two possible triangles that can be constructed from two given sides and a nonincluded angle.

Practice Problems!

Determine which reason, if any, can be used to prove that the two triangles are congruent. (If congruence cannot be proven, write none.)

3)

2)

4)

Practice Problems!

What extra information do I need to prove:
6) $\triangle M N O \cong \triangle P R O$
by SAS

$$
\text { 7) } \begin{aligned}
& \quad \triangle S I X \cong \triangle T E N \\
& \text { by ASA }
\end{aligned}
$$

Practice Problems!

8)

If $<B \cong<Z, A X \cong X Y$, and $<1 \cong<2$,
Write a congruence statement:
$\Delta A B X \cong \Delta X Z Y$
Why are these triangles congruent? SAA

Practice Problems!

9)

If $A E \cong C B, A B \cong C D$, and B is the midpoint of $E D$,
Write a congruence statement:
$\Delta A E B \cong \triangle C B D$
Why are these triangles congruent? SSS

