Name:	Date:	Period:
Review and Congruent Triangles Exam		Mr Woods

Review and Congruent Triangles

Part I: Multiple Choice. Answer all questions in this section. Circle your answer.

1. If two sides of a scalene triangle measure 12 and 14, the length of the third side could be:(1) 12(2) 2(3) 20(4) 26

2. One method that *cannot* be used to prove two triangles congruent is (1) AAS (2) SSA (3) SAS (4) HL

3. In the accompanying diagram T is the midpoint of SD and YU. What method can be used to prove $\Delta STY \cong \Delta DTU$?

5. In the diagram below of $\triangle AGE$ and $\triangle OLD$, $\angle AGE$ and $\angle OLD$ are right angles, $\overline{GE} \cong \overline{LD}$.

To prove that $\triangle AGE$ and $\triangle OLD$ are congruent by HL, what other information is needed? (1) $\overline{AG} \cong \overline{OL}$ (2) $\angle GAE \cong \angle LOD$ (3) $\overline{AE} \cong \overline{OD}$ (4) $\angle GEA \cong \angle LDO$

6. In the diagram below of $\triangle ABC$ and $\triangle DEF$ below, $\overline{AB} \cong \overline{DE}$, $\angle A \cong \angle D$, and $\angle B \cong \angle E$.

Which method can be used to prove $\triangle ABC \cong \triangle DEF$?

(1)	SSS	(2) SAS	(3) ASA	(4) HL	
7. In $\triangle ABC$, $\overline{AB} \cong \overline{AC}$. The measure of <b 40°.="" <a?<="" is="" measure="" td="" the="" what="">					
(1)	40°	(2) 50°	(3) 70°	(4) 100°	
8. In the diagram below of right triangle ACB, altitude CD is drawn to hypotenuse AB. If AB = 36 and AC = 12, what is the length of AD?					
(1) (2)	6 4	(3) 32 (4) 3		→B	
10. What is the point of concurrency of the three altitudes of a triangle?					
(1)	orthocenter	(2) incenter	(3) centroid	(4) circumcenter	
11. In triangle ABC, m <a= +="" 2,="" 4.="" and="" is="" m<b="2x" m<c="3x" of="" td="" the="" value="" what="" x,="" x?<=""></a=>					
(1)	29	(2) 31	(3) 59	(4) 61	
12. Which is true about the angle bisectors of all three angles of any triangle?					
(1)	(1) They do not intersect.		(3) They intersect in two points.		
(2)	They intersect in a	single point.	(4) They intersect in t	hree points.	
14. What is the length of a diagonal of a square whose side is 8?					
(1)	$\sqrt{2}$	(2) 2√2	(3) 4√2	(4) 8√2	
15. In a 30-60-90 right triangle, if the side opposite the 30 degree angle is equal to 20, what is					

the length of the hypotenuse?

(1) $\sqrt{3}$ (2) 10 (3) 40 (4) $20\sqrt{3}$

<u>Type equation here.Part II:</u> Free-Response. Answer **all** of the proofs in this section using the formal statement-reason column method. Make sure you mark up your diagrams and use **all** of the givens.

16. <u>Given:</u> NW bisects <SNO $\overline{SN} \cong \overline{ON}$

<u>Prove:</u> $\Delta SNW \cong \Delta ONW$

17. Given: R is the midpoint of CS and IH

<u>Prove:</u> $\Delta CHR \cong \Delta SRI$

18) <u>Given:</u> M is the midpoint of AB AC \cong MD CM \cong DB

 $\underline{\textbf{Prove:}} \ \Delta \ \textbf{ACM} \cong \ \Delta \ \textbf{MDB}$

