Chapter 5: Quadratics Topic 7: Sum and Product of the Root

Sum & Product of the Roots - General

Recall: The ROOTS of an equation are what we get when the equation is set equal to zero and we solve. Also known as the x-intercepts, the zeros, or the solutions.

We will sometimes be asked to find the sum of the roots and/or the product of the roots.

- To find the sum of the roots, we could solve the equation and add together the two solutions.
- To find the product of the roots, we could solve the equation and multiply the two solutions.

OR... We can take a shortcut...

Given the standard form:

Sum of the Roots =

Product of the Roots =

Examples: Identify a, b, c. Write the formula. Plug in and reduce.

1.
$$3x^2 - 6x + 11 = 0$$

2.
$$x^2 + 8x = -7$$

Prove it to yourself! For question #2, factor, solve & find sum and product by hand. Are they the same?

Multiple Choice Practice:

- **3.** What are the sum(s) and product (p) of the roots the equation $x^2 + 3x 27 = 0$.

(1)
$$s = 3, p = 27$$
 (3) $s = -27, p = 2$

(2)
$$s = -3, p = -27$$
 (4) $s = -27, p = -3$

$$(4) s = -27, p = -3$$

- **4.** What is the product of the roots of the equation $-8x^2 + 3x + 2 = 0$?
 - $(1) \frac{1}{4}$
- (2)2
- (4) 2

Standard equation modified for Sum & Product:

$$x^2 - (sum)x + (product) = 0$$

Two very important things to notice:

•

•

Write an Equation: Given the SUM & PRODUCT

Two options could happen...

If you're given integers, just plug in:

5. The sum of the roots of a quadratic equation is 12 and the product is -4. Write a quadratic equation.

If you're given fractions, get an LCD, plug in, and multiply to clear the denominators:

6. Write a quadratic equation, with integral coefficients whose roots have the following sum and products:

$$sum = \frac{-3}{4} \qquad product = \frac{-1}{2}$$

You try, in your notebook: Write a quadratic equation whose roots have the following sum and product. All equations must have integral coefficients

7.
$$sum = 4, product = -9$$

8.
$$sum = \frac{4}{5}, product = \frac{2}{3}$$

9.
$$sum = \frac{-1}{6}, product = \frac{1}{3}$$

10.
$$sum = -3, product = \frac{4}{5}$$

Name:	Date:	Period:
		Ch 5-7

Write an Equation: Given the ROOTS

Take the original sum & product equation:

$$x^2 - sum x + product = 0$$

Think about what sum (addition) and product (multiplication) mean.

If we call the two roots " r_1 " and " r_2 ", then the sum is $r_1 + r_2$, and the product is $r_1 \cdot r_2$. We can rewrite the equation as:

Examples:

- **11.** Write a quadratic formula whose roots are -3 and 7.
 - Write the formula
 - Calculate sum
 - Calculate product
 - Plug in & simplify
- **12.** Write a quadratic equation with integral coefficients whose roots are $\frac{3}{4}$ and $\frac{1}{2}$.
 - Write the formula
 - Calculate sum
 - Calculate product
 - Rewrite with LCD
 - Plug in & simplify

You try, in your notebook. Write the quadratic equation with integral coefficients which have the following roots:

13. Roots:
$$\frac{2}{5}$$
 and $\frac{4}{3}$

14. Roots:
$$\frac{2}{3}$$
 and $\frac{5}{6}$

15. Roots:
$$(3 + \sqrt{5})$$
 and $(3 - \sqrt{5})$

16. Roots:
$$(2 + 3\sqrt{2})$$
 and $(2 - 3\sqrt{2})$

17. Roots:
$$(3 + 4i)$$
 and $(3 - 4i)$

18. One root of
$$(5 + 6i)$$

19. One root of
$$4 + \sqrt{7}$$

Hint for 18 4 19:

Look at the previous examples... what is the relationship between the roots when they are irrational or imaginary?

Use that to determine the second root!

Given an incomplete equation and one root... find the missing value and second root

Example:

20. If a root of the equation $x^2 - 6x + k = 0$ is 4, find the second root and the missing value. *Collect the pieces that we know:*

a =

$$b = c =$$

Plug in as much as we can...

SUM:

$$-\frac{b}{a} = r_1 + r_2$$

PRODUCT:

$$\frac{c}{a} = r_1 \cdot r_2$$

Final answer: $k = r_2 =$

21. Given the equation $x^2 + kx + 18 = 0$ with one root of 6, find the second root and the missing value. *Collect the pieces that we know:*

a =

$$b = c =$$

Plug in as much as we can...

SUM:

$$-\frac{b}{a} = r_1 + r_2$$

PRODUCT:

$$\frac{c}{a} = r_1 \cdot r_2$$

Final answer: $k = r_2 =$

You try, in your notebook. For these equations, one root is given. Find the second root and the missing value.

22.
$$x^2 - x + k = 0$$
 $r_1 = -4$

23.
$$2x^2 + bx - 15 = 0$$
 $r_1 = 3$

24.
$$3x^2 - x + k = 0$$
 $r_1 = \frac{-5}{3}$