Name: \qquad Date: \qquad Period: \qquad

Chapter 3: Exponential \& Logarithmic Functions
 Topic 5: Modeling with Exponential \& Log Functions

Exponential Growth \& Decay Model $\boldsymbol{A}=\boldsymbol{P}(\boldsymbol{e})^{r t}$

In these questions, other pieces may be missing instead of just plugging in!
Example: The graph shows the growth of the minimum wage from 1970 through 2000.
a. Find the exponential growth function that models the data for 1970 through 2000.

- Plug in what you know
- Use any known point to solve for r

b. By which year will the minimum wage reach $\$ 7.50$ per hour?

Example: The half life of Carbon-14 is 5715 years. That is, after 5715 years, a sample of Carbon- 14 will have decayed to half of the amount. What is the exponential decay model for Carbon-14?

- Begin with the exponential decay model.
- In terms of P, what will the output (A) be?
- Divide both sides by P
- Log to solve for k

Logistic Growth Model

$$
A=\frac{c}{1+a(e)^{-b t}}
$$

Where a, b and c are constants with $c>0$ and $b>0$

Unlike exponential growth which has no upper bound (can increase infinitely), logistic growth does have an upeer bound. As time increases, the expression $a(e)^{-b t}$ approaches zero, making A approach c. Therefore, \boldsymbol{c} is the limit to the growth of A and creates a horizontal asymptote for the graph of these functions

Example: The function $f(t)=\frac{30000}{1+20 e^{-1.5 t}}$ describes the number of people who have become ill with influenza t weeks after its initial outbreak in a town with 30,000 inhabitants.

How many people became ill with the flu when the epidemic began?

How many people were ill by the end of the $4^{\text {th }}$ week?

What is the limited size of the population that becomes ill?

Newton's Law of Cooling

The temperature, T , of a heated object at time t is given by $\boldsymbol{T}=\boldsymbol{C}+\left(\boldsymbol{T}_{\mathbf{0}}-\boldsymbol{C}\right) \boldsymbol{e}^{\boldsymbol{k t}}$
Where: $\quad \mathbf{C}$ is the constant temperature of the surrounding medium (often room temperature).
$\boldsymbol{T}_{\mathbf{0}}$ is the initial temperature of the heated object.
\boldsymbol{k} is a negative constant that is associated with cooling object.
Example: A cake removed fro the oven has a temperature of $210^{\circ} \mathrm{F}$. It is left to cool in a room that has a temperature of $70^{\circ} \mathrm{F}$. After 30 minutes, the temperature of the cake is $140^{\circ} \mathrm{F}$.
a. Use Newton's Law of Cooling to find a model for the temperature of the cake, T, after t minutes.
b. What is the temperature of the cake after 40 minutes?
c. When will the temperatures of the cake be $90^{\circ} \mathrm{F}$?

Formulas you need to know from this chapter:

Compound Interest	$A=P\left(1+\frac{r}{n}\right)^{n t}$
Continuous Compounding Exponential Growth/Decay	$A=P(e)^{r t}$
Logistic Growth	$A=\frac{c}{1+a(e)^{-b t}}$
Newton's Law of Cooling	$T=C+\left(T_{0}-C\right) e^{k t}$

