

1.4 Presenting Scientific Data Organizing Data Line Graphs A line graph is useful for showing changes that occur in related variables. In a line graph, the manipulated variable is generally plotted on the horizontal axis, or *x*-axis. The responding variable is plotted on the vertical axis, or *y*-axis, of the graph.

Organizing Data

Sometimes the data points in a graph yield a straight line.

- The steepness, or **slope**, of this line is the ratio of a vertical change to the corresponding horizontal change.
- The formula for the slope of the line is

$$Slope = \frac{Rise}{Run}$$

Organizing Data

A **direct proportion** is a relationship in which the ratio of two variables is constant. The relationship between the mass and the volume of water is an example of a direct proportion.

- A 3-cubic-centimeter sample of water has a mass of 3 grams.
- A 6-cubic-centimeter sample of water has a mass of 6 grams.
- A 9-cubic-centimeter sample of water has a mass of 9 grams.

Organizing Data

An **inverse proportion** is a relationship in which the product of two variables is a constant.

- A flow rate of 0.5 gallon per minute will fill the pot in 2 minutes.
- A flow rate of 1 gallon per minute will fill the pot in 1 minute.
- A flow rate of 2 gallons per minute will fill the pot in 0.5 minute.

1.4 Presenting Scientific Data

Organizing Data

The table shows the data transfer rates for modems used in home computers. Data transfer rates are often measured in kilobits per second, or kbps. The time required to upload a 1-megabyte (MB) file is given for each rate listed.

Type of Modem	Data Transfer Rate (kbps)	Upload Time for 1 MB (s)
56K dial-up	33.6	238
Cable	64	125
DSL	128	63
Cable	256	31
DSL	640	13

Data Analysis

Organizing Data

1. Using Graphs Use the data in the table to create a line graph. **Describe the relationship** between data transfer rate and

upload time

Type of Modem	Data Transfer Rate (kbps)	Upload Time for 1 MB (s)
56K dial-up	33.6	238
Cable	64	125
DSL	128	63
Cable	256	31
DSL	640	13

Communicating Data

Scientists also exchange information through conversations, e-mails, and Web sites. Young scientists often present their research at science fairs, which we call poster sessions.

1.4 Presenting Scientific Data

Communicating Data

Peer review is a process in which scientists examine other scientists' work.

- Peer review encourages comments, suggestions, questions, and criticism from other scientists.
- Based on their peers' responses, the scientists who submitted their work for review can then reevaluate how to best interpret their data.

Assessment Questions

- 2. How does a line graph generally show the relationship between the manipulated variable and the responding variable?
 - a. The manipulated variable is plotted on the *x*-axis, and the responding variable is plotted on the *y*-axis.
 - b. The responding variable is plotted on the *x*-axis, and the manipulated variable is plotted on the *y*-axis.
 - c. The manipulated variable is plotted on the graph, and the responding variable is shown by the slope.
 - d. The responding variable is plotted on the graph, and the manipulated variable is shown by the slope.

1.4 Presenting Scientific Data

Assessment Questions

- 2. How does a line graph generally show the relationship between the manipulated variable and the responding variable?
 - a. The manipulated variable is plotted on the *x*-axis, and the responding variable is plotted on the *y*-axis.
 - b. The responding variable is plotted on the *x*-axis, and the manipulated variable is plotted on the *y*-axis.
 - c. The manipulated variable is plotted on the graph, and the responding variable is shown by the slope.
 - d. The responding variable is plotted on the graph, and the manipulated variable is shown by the slope.

ANS: A

Assessment Questions

- 4. Why is peer review an important part of the scientific process?
 - a. Peer review makes sure that the correct researcher gets credit for discoveries.
 - b. Peer review helps identify errors or bias in research.
 - c. Peer review is the system used to report information to other scientists.
 - d. Peer review helps other scientists form theories about a discovery.

ANS: B