\qquad
\qquad
\qquad

Chapter 3: Constructions

Topic 6: Centroid Day 1

Construction \#11: Centroid - All three MEDIANS

Recall: A \qquad of a triangle is drawn from the vertex of a triangle to the \qquad of the opposite side. A \qquad creates two congruent line segments.

The three \qquad of a triangle are concurrent at a point called the \qquad -

Some \qquad facts:
1.) The \qquad is the " \qquad " of a triangle.
2.) The \qquad is always found \qquad the triangle.

\qquad
\qquad

The Coordinates of the Centroid:

Given three vertices of a triangle: $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$, and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$, the coordinates of the centroid are the
\qquad of all of those points. Therefore, the coordinates of the centroid can be found by this rule: \qquad .

This helps to explain why the centroid is the center of gravity of a triangle.

Examples:

1) Given $\triangle \mathrm{ABC}$ with coordinates $\mathrm{A}(0,0), \mathrm{B}(4,0)$, and $\mathrm{C}(2,6)$, show that the medians of $\triangle \mathrm{ABC}$ intersect at $(2,2)$.
2) $\triangle A B C$ has vertices $A(-3,3), B(2,5)$, and $C(4,-3)$. What are the coordinates of the centroid of $\triangle A B C$?
3) Given $\triangle P Q R$ with vertices $P(3,4), Q(2,8)$, and $R(10,0)$. What are the coordinates of the centroid of $\triangle \mathrm{PQR}$?
4) Given $\Delta J K L$ with vertices $J(3 x, 2 y), K(0,4 y)$, and $L(6 x, 0)$. What are the coordinates of the centroid of Δ JKL?
\qquad
\qquad
\qquad

Chapter 3: Constructions

Topic 6 Homework: Centroid Day 1
Solve each of the examples completely. Show steps to your solution. For any construction, show all construction marks.
1.) Construct the centroid of $\triangle A B C$.

2.) Given the coordinates of a triangle, determine the coordinates of the centroid of each triangle:
a.) $D(0,0), E(3,15)$, and $F(12,0)$
b.) $\mathrm{G}(-2,0), \mathrm{H}(-4,-3), \mathrm{I}(-12,-6)$
c.) $E(x, 2 y), F(3 x, 5 y), G(4 x, 2 y)$
d.) $\mathrm{T}(4,5), \mathrm{U}(6,1), \mathrm{V}(8,9)$

Name: \qquad Date: \qquad Period: \qquad

Review:

3. In $\triangle K L C, \overline{K F}$ is an angle bisector. If $m \angle L K F=4 x+3$ and $m \angle C K F=6 x-15$, find $\angle C K L$
Sketch \& Label
Justify
Work
4. In triangle $A B C, \overline{C K}$ is the median to $\overline{A B}$, and the length of $\overline{A K}$ is $8 y+50$ and $\overline{K B}$ is $4 y+114$, find the length of $\overline{A B}$. Sketch \& Label Justify Work
5. In $\triangle A C T, \overline{C O}$ is a perpendicular bisector. If $\overline{A O}=4 x+8$ and $\overline{T O}=2 x+24$, and $m \angle A O C=2 z+16$, find $x \& z$.
Sketch \& Label Justify Work
6. In $\triangle X Y Z, \overline{Y W}$ is an altitude. If $m \angle X Y W=x+10$ and $m \angle W X Y=6 x-4$, find x.
