Chapter 3: Constructions Topic 6: Centroid Day 1

Construction #11: Centroid - All three MEDIANS

Recall: A of a triangle is drawn from the vertex of a triangle to the						
of the opposite side. A	creates two congruen	t line segments.				
The three of a triangle are concurrent at a point called the						
Some facts:	:					
1.) The	is the "	" of a triangle.				
2.) The	is <i>always</i> found	the triangle.				

Date: _____

Period: _____

The Coordinates of the Centroid:

Given three vertices of a triangle: (x_1,y_1) , (x_2,y_2) , and (x_3,y_3) , the coordinates of the centroid are the

_____ of all of those points. Therefore, the coordinates of the centroid can be

found by this rule: ______.

This helps to explain why the centroid is the center of gravity of a triangle.

Examples:

1) Given \triangle ABC with coordinates A(0,0), B(4,0), and C(2,6), show that the medians of \triangle ABC intersect at (2,2).

2) Δ ABC has vertices A(-3,3), B(2,5), and C(4,-3). What are the coordinates of the centroid of Δ ABC?

3) Given Δ PQR with vertices P(3,4), Q(2,8), and R(10,0). What are the coordinates of the centroid of Δ PQR?

4) Given Δ JKL with vertices J(3x,2y), K(0,4y), and L(6x,0). What are the coordinates of the centroid of Δ JKL?

Name	
name.	

Chapter 3: Constructions Topic 6 Homework: Centroid Day 1

Solve each of the examples completely. Show steps to your solution. For any construction, show all construction marks.

1.) Construct the centroid of $\triangle ABC$.

2.) Given the coordinates of a triangle, determine the coordinates of the centroid of each triangle:

a.) D(0, 0), E(3, 15), and F(12,0)

b.) G(-2, 0), H(-4, -3), I(-12, -6)

c.) E(x, 2y), F(3x, 5y), G(4x, 2y)

d.) T(4,5), U(6, 1), V(8,9)

Na <u>Re</u>	me:		Date:	Period: _
3.	In ΔKLC , \overline{KF} is an angle	e bisector. If $m \angle LKF = 4x + 3$	and $m \angle CKF = 6x - 15$, find $\angle C$.	KL
	Sketch & Label	Iustifv	Work	

4. In triangle *ABC*, \overline{CK} is the median to \overline{AB} , and the length of \overline{AK} is 8y + 50 and \overline{KB} is 4y + 114, find the length of \overline{AB} . <u>Sketch & Label</u> <u>Justify</u> <u>Work</u>

5. In $\triangle ACT$, \overline{CO} is a perpendicular bisector. If $\overline{AO} = 4x + 8$ and $\overline{TO} = 2x + 24$, and $m \angle AOC = 2z + 16$, find x & z. <u>Sketch & Label</u> <u>Justify</u> <u>Work</u>

6. In $\triangle XYZ$, \overline{YW} is an altitude. If $m \angle XYW = x + 10$ and $m \angle WXY = 6x - 4$, find x. <u>Sketch & Label</u> <u>Justify</u> <u>Work</u>